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ABSTRACT cAMP-response element binding (CREB) proteins are involved in transcriptional regulation in a number of cellular
processes (e.g., neural plasticity and circadian rhythms). The CREB family contains activators and repressors that may interact
through positive and negative feedback loops. These loops can be generated by auto- and cross-regulation of expression of
CREB proteins, via CRE elements in or near their genes. Experiments suggest that such feedback loops may operate in several
systems (e.g., Aplysia and rat). To understand the functional implications of such feedback loops, which are interlocked via
cross-regulation of transcription, a minimal model with a positive and negative loop was developed and investigated using
bifurcation analysis. Bifurcation analysis revealed diverse nonlinear dynamics (e.g., bistability and oscillations). The stability of
steady states or oscillations could be changed by time delays in the synthesis of the activator (CREB1) or the repressor
(CREB2). Investigation of stochastic fluctuations due to small numbers of molecules of CREB1 and CREB2 revealed a bimodal
distribution of CREB molecules in the bistability region. The robustness of the stable HIGH and LOW states of CREB ex-
pression to stochastic noise differs, and a critical number of molecules was required to sustain the HIGH state for days or
longer. Increasing positive feedback or decreasing negative feedback also increased the lifetime of the HIGH state, and
persistence of this state may correlate with long-term memory formation. A critical number of molecules was also required to
sustain robust oscillations of CREB expression. If a steady state was near a deterministic Hopf bifurcation point, stochastic
resonance could induce oscillations. This comparative analysis of deterministic and stochastic dynamics not only provides
insights into the possible dynamics of CREB regulatory motifs, but also demonstrates a framework for understanding other
regulatory processes with similar network architecture.

INTRODUCTION

The cyclic AMP (cAMP)-response element-binding protein

(CREB) family of transcription factors is crucial for a variety

of cellular processes (1), including induction of neuronal plas-

ticity and formation of long-term memory (LTM), in both

invertebrates and vertebrates (2–5), circadian rhythm (6–8),

neuronal differentiation (9), addiction and depression (10),

hormonal control of metabolic processes (11), and sperma-

togenesis (12). Thus, understanding the regulatory properties

and dynamics of CREB is important for understanding many

key biological functions.

The involvement and regulation of CREBs in the induc-

tion of LTM have been extensively studied (4,13). For

example, in the mollusc Aplysia, two creb genes (creb1 and

creb2) and their corresponding proteins have been charac-

terized (14–16). CREB1 is a transcriptional activator neces-

sary for induction of long-term synaptic facilitation, a

mechanism for LTM. Upon exposure of sensory neurons

to the neurotransmitter serotonin (5-HT), creb1 is activated

(13,15) via activation of the protein kinase A (PKA) in-

tracellular signaling pathways (4). CREB2 functions as a

transcriptional repressor that poses inhibitory constraints on

the induction and formation of LTM (16,17). Upon exposure

to 5-HT, repression by CREB2 is relieved, possibly via

phosphorylation of CREB2 by mitogen-activated protein

kinase (MAPK) (16). CREB proteins regulate gene expres-

sion by binding to enhancer sequences termed cAMP-

response elements (CREs). creb genes themselves may be

regulated by CREs. For example, Mohamed et al. (14)

recently characterized CREs in the promoter regions of

Aplysia creb1 and creb2, and the mammalian CREB ac-

tivator gene has CREs in its promoter region (18). The ex-

istence of these CREs suggests that a regulatory motif with

interlocked positive and negative feedback loops may char-

acterize transcriptional regulation by CREBs. In this motif,

an activator such as CREB1 would further activate expres-

sion of its own gene via binding to CREs, forming a positive

feedback loop. The activator would also activate expression

of a repressor such as creb2. The repressor would, in turn,

repress expression of the activator, closing a negative feed-

back loop. The repressor would also repress its own gene. In

primary rat Sertoli cells (12), a transactivator form of CREB

(similar to the activator CREB1) and a repressor isoform of

CREB (similar to CREB2) are suggested to interact via such

interlocked positive and negative loops, generating oscillations
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in gene expressions. This motif is illustrated in Fig. 1, where

for definiteness, we term the activator CREB1 and the re-

pressor CREB2.

The potential regulatory dynamics of CREB feedback

have not been characterized. To explore these dynamics, we

developed a minimal mathematical model to represent the

feedback loops. Model dynamics can suggest experimentally

testable hypotheses. For example, a prediction of the effect

of increasing (or decreasing) the strength of positive (or

negative) feedback might assist in designing protocols to

regulate the induction and expression of CREB activators

and repressors. Induction or activation of CREBs correlates

with long-term memory formation not only in Aplysia, but

also in mammals (19–22). Therefore, modulating CREB ex-

pression is likely to regulate the formation and persistence of

LTM and other cellular processes mentioned above (1–12).

In the minimal model, CREB1 and CREB2, respectively,

denote activator and repressor CREB proteins.

Given that the actual regulatory dynamics of signaling

pathways and gene network of CREBs have not yet been

fully characterized, a minimal model representing the essen-

tial nonlinear network architecture of CREBs has several

advantages. 1), The minimal model has relatively few pa-

rameters, which allows a systematic analysis of model dy-

namics and their robustness to parameter variation. 2), The

minimal model is a core mathematical structure that can be

extended to more detailed and biologically faithful models

by incorporating other regulatory pathways once their ki-

netics are characterized. 3), Because the minimal model

captures the essential nonlinearity embedded in the network

structure, the dynamics may not change greatly upon the

addition of other upstream and downstream regulatory path-

ways, and 4), Similar dynamics may characterize cellular

processes based on similar regulatory motifs.

A number of minimal (or reduced) models have been

developed to describe regulation of gene expression associ-

ated with the cell cycle, circadian rhythms, the tumor sup-

pressor protein p53, and synthetic gene networks (23–28).

Among these, only the model developed by Smolen et al.

(25) has described positive and negative feedback loops of

two transcription factors similar to Fig. 1. However, that

model did not represent dimerization of the repressor, as

occurs in the CREB family. That study also did not include

bifurcation analysis to examine how dynamics depend on

system parameters.

We focused on four essential questions about the dynamic

properties of the interlocked feedback loops of CREBs: 1),

Are bistability and oscillations possible? 2), How does the

strength of positive and negative feedback affect the system

dynamics? 3), How could time delays inherent in the regula-

tion of expression of activator and repressor CREB proteins

impact the dynamics? 4), How do stochastic fluctuations due

to small numbers of molecules of CREBs impact the dy-

namics? Bifurcation analysis of the minimal model illustrates

that both bistability and oscillations are possible given pro-

per strengths of positive and negative feedback. Bistability

and oscillations are fairly robust against variations of param-

eters. Time delays in regulation of CREB expression can

alter a stable steady state to a stable limit cycle, or to chaotic

dynamics. Stochastic simulations illustrate that a bimodal

distribution of the numbers of CREB molecules character-

izes the dynamics in the bistable region. The relative

robustness of the HIGH and LOW stable states to molecular

noise depends on the location of the unstable steady state

between the HIGH and LOW states. A critical number of

molecules is needed to sustain HIGH CREB expression for

a day or longer, which may correlate with consolidation of

LTM. A critical number of CREB molecules is also required

to sustain robust oscillations. Stochastic resonance is also

found. An optimal noise level induces a stochastic oscillation

with the most reliable periodicity.

This comparative study of the deterministic bifurcation

analysis and stochastic simulations also illustrates a frame-

work to understand other cellular regulatory processes with

similar network architectures. Examples include circadian

rhythms, the cell cycle, and artificial gene networks.

MODEL DEVELOPMENT AND
COMPUTATIONAL METHODS

Minimal model development

The minimal model represents regulation of CREB1 and CREB2 expression

by binding of these proteins to CREs near their own genes, degradation of

CREB1 and CREB2, and basal synthesis of CREB1 and CREB2 (Fig. 1). A

number of simplifications are made. The minimal model does not explicitly

describe the translation of creb mRNAs, the phosphorylation of CREBs

by kinases, the signaling pathways regulating phosphorylation, or the trans-

location of CREBs between nucleus and cytoplasm. A homogeneous,

single-compartment cellular structure is assumed. The omitted steps are

lumped into a single effective synthesis process of CREBs, as illustrated in

Fig. 1.

These simplifications lead to a minimal model with two deterministic

ordinary differential equations (ODEs):

d½CREB1�
dt

¼Vx

½CREB1�2=Kx

1 1 ½CREB1�2=Kx 1 ½CREB2�2=Ky

" #

� kdx½CREB1�1 rbas;x; (1)
FIGURE 1 Schematic of the minimal model with interlocked positive and

negative feedback loops of activator (CREB1) and repressor (CREB2).
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d½CREB2�
dt

¼Vy

½CREB1�2=Kx

1 1 ½CREB1�2=Kx 1 ½CREB2�2=Ky

" #

� kdy½CREB2�1 rbas;y: (2)

In Eq. 1, the first term of the right-hand side represents the autoactivation

of creb1 expression by CREB1 homodimer binding to a CRE. The

dependence on CREB2 in the denominator represents repression of creb1

expression by competitive binding of CREB2 homodimer to the same CRE

(for further details, see Supplementary Material). The production rate of

CREB1 saturates hyperbolically with CREB1 homodimer concentration,

and decreases hyperbolically with CREB2 homodimer concentration. The

Hill coefficients of 2 for [CREB1] and [CREB2] represent, in the simplest

plausible manner, the requirement for two CREB1 or CREB2 monomers to

form homodimers. By mass action, homodimer concentration should be

more or less proportional to the square of monomer concentration. Equation

2, analogously, represents competitive binding of CREB1 and CREB2

homodimers to the CRE regulating CREB2 expression. These equations are

identical to a previously published minimal model for competitive binding

of two transcription factors (25), except that the Hill coefficient of CREB2 is

2 here (Eqs. 1 and 2) and a basal synthesis rate is incorporated for CREB2.

In Eqs. 1 and 2, Vx and Vy are the maximum induced synthesis rates of

CREB1 and CREB2. Kx and Ky are, respectively, the dissociation constants

of CREB1 and CREB2 homodimers from the CRE. The second term in the

right-hand side of Eq. 1 represents a first-order degradation of CREB1, where

kdx is the degradation rate constant. A small basal synthesis rate of CREB1,

rbas,x, is also assumed. In Eq. 2, kdy and rbas,y, have analogous meanings.

The purpose of the minimal model is to investigate the qualitative

nonlinear dynamics of the interlocked feedback loops. Currently, there is

little data to quantitatively determine the temporal dynamics of CREBs. The

parameters in the model (Eqs. 1 and 2) are assigned a set of basal values that

have physiological relevance to the characteristic timescales of LTM and

that lie within a physiologically feasible range. The basal values of the

parameters in Eqs. 1 and 2 are Vx ¼ 0.4 min�1, Vy ¼ 0.01 min�1, Kx ¼ 5,

Ky ¼ 10, kdx ¼ 0.04 min�1, kdy ¼ 0.01 min�1, rbas,x ¼ 0.003 min�1, and

rbas,y ¼ 0.002 min�1. These basal parameter values were chosen to allow

qualitative simulation of CREB1 phosphorylation dynamics observed in

5-HT stimulus protocols (see Fig. 6). Concentrations of CREB1 and CREB2

are expressed in arbitrary units, because the actual protein concentrations of

CREBs in neurons are not well defined.

To investigate the robustness of the model dynamics to a change in the

binding mechanisms of CREBs to CREs, a model variant was developed.

This variant assumes that expression of CREB1 is regulated by noncom-

petitive binding of CREB1 and CREB2 to different CREs, and similarly for

expression of CREB2. This mechanism is represented by another pair of

ODEs (Eqs. 3 and 4) (see Supplementary Material):

d½CREB1�
dt

¼Vx

½CREB1�2=Kx

1 1 ½CREB1�2=Kx

� �
3

1

1 1 ½CREB2�2=Ky

" #

� kdx½CREB1�1 rbas;x; (3)

d½CREB2�
dt

¼Vy

½CREB1�2=Kx

1 1 ½CREB1�2=Kx

� �
3

1

1 1 ½CREB2�2=Ky

" #

� kdy½CREB2�1 rbas;y: (4)

Parameters in Eqs. 3 and 4 have the same meanings and basal values as

given for Eqs. 1 and 2.

Delayed differential equations (DDEs)

Gene regulatory systems have ubiquitous time delays associated with

translocation of mRNA and transcription factors between cytoplasm and

nucleus and, thereby, transcription of genes (29–32). To explore the effects

of time delays on the model of Eqs. 1 and 2, discrete delays for the synthesis

of CREB1, tCREB1, and CREB2, tCREB2, were incorporated into terms that

describe the synthesis of CREBs. The resulting DDEs are:

These DDEs were simulated as follows, the values of [CREB1] and

[CREB2] at any given time t are stored and used after delays tCREB1 and

tCREB2 to calculate the derivatives of [CREB1] and [CREB2], respectively.

Stochastic format of ODE model

The numbers of CREB1 and CREB2 molecules are likely to be in the range

of tens to hundreds in a single neuron (33). Consequently, we investigated

the stochastic effects of the finite number of molecules on the system dy-

namics. The Gillespie stochastic modeling algorithm (30,34) was imple-

mented to simulate a stochastic version of the minimal model (Eqs. 1 and 2).

The representative reactions and their respective propensity functions are listed

in Table 1.

Reaction probabilites, or propensities for the synthesis of CREB1 and

CREB2, are modeled by use of the Hill-type rate expression in the Gillespie

algorithm. An alternative approach would be to decompose the synthesis of

CREB1/2 into a series of elementary reactions (unimolecular or bimolecular)

and use only rates for such elementary reactions in the Gillespie algorithm.

We chose the former approach, for two reasons. First, recent comparisons

between both approaches in simulations of gene regulation and protein phos-

phorylation underlying circadian rhythms found that composite Michaelis-

Menten type rate expressions gave very similar results to elementary

reaction rates (35–37). Second, retaining the basic form of the minimal

model in both cases allows for a direct comparison of the minimal model

dynamics predicated by deterministic and stochastic simulations. This ap-

proach also avoided substantially increasing the number of reactions and

differential equations.

Computational methods

For deterministic simulation, ODEs were numerically integrated using the

fourth-order Runge-Kutta algorithm in the numerical analysis package

XPPAUT (38). Numerical bifurcation analyses of the ODEs were performed

d½CREB1�
dt

¼ rbas;x � kdx½CREB1�1 Vx

f½CREB1�ðt � tCREB1Þg2
=Kx

1 1 f½CREB1�ðt � tCREB1Þg2
=Kx 1 f½CREB2�ðt � tCREB2Þg2

=Ky

" #
; (5)

d½CREB2�
dt

¼ rbas;y � kdy½CREB2�1 Vy

f½CREB1�ðt � tCREB1Þg2
=Kx

1 1 f½CREB1�ðt � tCREB1Þg2
=Kx 1 f½CREB2�ðt � tCREB2Þg2

=Ky

" #
: (6)
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with XPPAUT. DDEs were numerically integrated by three software tools:

DDE solver in XPP, dde23 in Matlab (39), and a program implementing

forward Euler algorithm for DDEs. Differences of computational results

with these DDE integrators were not significant.

For stochastic simulation, the Gillespie algorithm was programmed in

FORTRAN. The random number generator used was from the IMSL sta-

tistics library. Power spectrum density (PSD) analysis to characterize the

spectrum (or period) features of stochastic time series was performed in

Matlab.

RESULTS

Varying the strength of negative feedback
generates four different bifurcation diagrams, in
which bistability and oscillations are observed

Fig. 1 represents the minimal model. In the positive feedback

loop, binding of the CREB1 homodimer to CRE further ac-

tivates the production of CREB1. In the negative feedback

loop, CREB2 repressor homodimers bind to CRE, inhibiting

the production of CREB2. In addition, CREB1 activates

CREB2 expression; whereas CREB2 represses CREB1 ex-

pression. Therefore, the positive feedback loop of CREB1 and

negative feedback loop of CREB2 are interlocked.

We proceeded to use Eqs. 1 and 2 to investigate how

dynamics vary with the strength of positive feedback

by CREB1 for different strengths of negative feedback by

CREB2. Varying Vx, the strength of autoactivation by

CREB1 of CREB1 synthesis, alters the strength of positive

feedback. Therefore, we depicted the dynamics with one-

parameter bifurcation diagrams of [CREB1] versus Vx. Fig.

2, A–D, illustrate four different bifurcation diagrams, each at

a different fixed value of Vy, the production rate of repressor

CREB2. Each diagram therefore corresponds to a different

strength of the negative feedback in which CREB2 represses

synthesis of both CREBs.

In Fig. 2 A, for a very weak negative feedback strength

(Vy¼ 0.01 min�1), bistable steady states of [CREB1] arise in

the range of Vx bounded by two limit points (LP1 and LP2).

Outside of this range only a single steady state of [CREB1]

exists. Upon increasing Vy to 0.4 min�1 (Fig. 2 B), oscil-

lations bifurcate from the upper steady state of the bistability

region at a subcritical Hopf (sub-H) point (Fig. 2 B, oscil-

lation amplitudes marked by open circles). These unstable

oscillations coalesce with the unstable middle branch of

steady states connected by LP1 and LP2 (Fig. 2 B, dashed
line), generating a homoclinic (HC) bifurcation point. The

upper steady-state solution is unstable between LP1 and sub-

H, but becomes stable beyond sub-H for larger values of Vx.

Upon further increasing Vy to 0.8 min�1 (Fig. 2 C), the sub-H

point moves beyond the bistability range of Vx bounded by

LP1 and LP2 (Fig. 2 C1). Now, as sub-H is crossed from

lower to higher values of Vx, a stable limit-cycle oscillation

(solid circles) is replaced, in a narrow region, by the co-

existence of a stable limit-cycle oscillation and a stable

steady state. At the limit point of periodic orbits (LP-PO),

stable and unstable limit-cycle oscillations coalesce. De-

creasing Vx from LP-PO, the amplitude of oscillation de-

creases, but the period lengthens (Fig. 2 C2). When Vx

decreases to LP2, the limit-cycle oscillation disappears at

a saddle-node-invariant-circle (SNIC) bifurcation point, and

is replaced by a stable steady state. The period of oscillation

at SNIC tends to infinity (Fig. 2 C2).

As Vy is increased to 2.0 min�1 (Fig. 2 D), the two limit

points (LP1 and LP2) both move together and coalesce at a

SNIC. Consequently, bistability disappears. Oscillations are

preserved, but now arise on the left from a supercritical Hopf

bifurcation point (sup-H). The sub-H in Fig. 2 D1 is similar

to that in Fig. 2 C1. The main difference between sub-H and

sup-H is that upon crossing sup-H, an oscillation with small

TABLE 1 Stochastic version of the minimal model

Reaction Propensity function

B ��!P1
CREB1

P1 ¼ ðVxVÞ N2

CREB1= KxV
2

� �
1 1 N2

CREB1= KxV
2

� �
1 N2

CREB2= KyV
2

� � (7)

CREB1 ��!P2
B P2 ¼ kdxNCREB1 (8)

B ��!P3
CREB1 P3 ¼ rbas;xV (9)

B ��!P4
CREB2

P4 ¼ ðVyVÞ N2

CREB1= KxV
2

� �
1 1 N

2

CREB1= KxV
2

� �
1 N

2

CREB2= KyV
2

� � (10)

CREB2 ��!P5
B P5 ¼ kdyNCREB2 (11)

B ��!P6
CREB2 P6 ¼ rbas;yV (12)

NCREB1 and NCREB2 in Eqs. 7–12 represent the number of molecules of CREB1 and CREB2. In the second column, the propensities of occurrence of each

reaction step are derived from kinetic terms in Eqs. 1 and 2, and are scaled by multiplication of the system volumetric parameter V. Eqs. 7 and 8 describe the

production and degradation propensity function, respectively, of CREB1. Eq. 9 describes the basal synthesis propensity of CREB1. Eqs. 10–12, for CREB2,

are analogous to Eqs. 7–9. Parameters in Eqs. 7–12 are the same as for the deterministic ODEs (Eqs. 1 and 2), and have the same basal values.
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amplitude arises from a stable steady state, whereas upon

crossing sub-H, an oscillation with large amplitude abruptly

arises from a stable steady state. Fig. 2 D2 illustrates that the

period of limit-cycle oscillation decreases from sup-H to sub-

H. Thus, the interlocked feedback loops of CREBs might

support limit-cycle oscillation with a broad range of periods,

e.g., from hours to days (Fig. 2, C2 and D2). Alternatively,

by scaling all the parameters containing units of time, any

biologically reasonable oscillation period can be obtained.

How many qualitatively different one-parameter bifurca-

tion diagrams of [CREB1] versus Vx may be attained at

different Vy? This question can be answered by inspection

of the two-parameter bifurcation diagram in the (Vx, Vy)-

parameter plane (Fig. 3 A), which is constructed by continua-

tion of the loci of five different types of codimension-1

singular points identified in Fig. 2, A–D, namely, LP (LP1,

LP2), Hopf (sub-H, sup-H), SNIC, HC, and LP-PO.

XPPAUT was used to numerically determine and continue

the loci of these singular points. Four distinct bifurcation

diagrams of [CREB1] versus Vx are observed. The typical

value of Vy for each case is marked A–D in Fig. 3 A. These

values correspond to the one-parameter bifurcation diagrams

of Fig. 2, A–D, respectively. The loci of SNIC and LP2 are

overlapping in Fig. 3 A because SNIC and LP2 occur at

identical Vx (Fig. 2 C1). The loci of HC and LP-PO are close

to the sub-H in Fig. 3 A. Two codimension-2 singular points,

a cusp point and a Bogdanov-Takens (BT) bifurcation point,

are identified in Fig. 3 A. At the cusp point (Vx, Vy)¼ (0.736

min�1, 1.627 min�1), the LP1 and LP2 limit points coalesce.

Therefore, upon crossing the cusp point, three steady states

appear from a single steady state. The BT bifurcation, at (Vx,

Vy) ¼ (0.218 min�1, 0.057 min�1), is caused by coalescence

of a limit point (here LP1) and a Hopf bifurcation point (sub-

H). Upon crossing BT, a Hopf bifurcation (sub-H) appears,

corresponding to the appearance of an oscillating solution.

Further inspection of Fig. 3 A illustrates that the (Vx, Vy)-

parameter plane is divided into seven regions by the loci of

different bifurcation points, as depicted by Regions I–III,

IVa, IVb, Va, and Vb. The seven corresponding phase dia-

grams of the dynamic solutions for [CREB2] and [CREB1]

FIGURE 2 Bifurcation diagrams of [CREB1]

versus Vx at four values of Vy and graphs

depicting period of oscillation as a function of

Vx. Solid lines depict stable steady states, dashed

lines depict unstable steady states; solid (open)

circles denote maximum and minimum values

of [CREB1] on stable (unstable) limit-cycles.

Codimension-1 singular points are marked as

LP, limit point (or saddle-node point); sub-H,

subcritical Hopf bifurcation point; sup-H, su-

percritical Hopf point; HC, homoclinic point;

SNIC, saddle-node-invariant-circle bifurcation;

and LP-PO, limit point on periodic orbits.

(A) Bifurcation diagram at Vy ¼ 0.01 min�1.

(B) Bifurcation diagram at Vy¼ 0.4 min�1. (C1)

Bifurcation diagram at Vy ¼ 0.8 min�1. (C2)

Period of oscillations at Vy ¼ 0.8 min�1. (D1)

Bifurcation diagram at Vy ¼ 2 min�1. (D2)

Period of oscillations at Vy ¼ 2 min�1. Other

parameters have basal values: Kx¼ 5; Ky¼ 10;

kdx ¼ 0.04 min�1; kdy ¼ 0.01 min�1; rbas, x ¼
0.003 min�1; and rbas, y ¼ 0.002 min�1.
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are illustrated in Fig. 3 B. In Region I of Fig. 3 A, only a

single steady state with low concentrations of CREB1 and

CREB2 exists (Fig. 3 B,I). In Region II of Fig. 3 A, similar to

Region I, only a single steady state may exist, but with higher

concentrations of CREB1 and CREB2. This is due to the

stronger positive feedback (Vx) in Region II than in region I

as well as the weaker negative feedback (Vy) in Region II. In

Region-III, bounded by LP1, LP2, and sub-H, three steady

states arise, but only the lower steady state is stable to small

perturbations in [CREB1] or [CREB2] (Fig. 3 B, III). In

Region IV (IVa and IVb) of Fig. 3 A, bounded by LP1, LP2,

sub-H, and horizontal axis of Vx, three steady states exist

(Fig. 3 B, IVa and IVb). Bistability exists, in which the upper

and lower steady states are stable to small perturbations, but

the middle steady state is unstable. The only difference

between the phase diagrams depicted in Fig. 3 B, IVa and IVb,

is that the upper state in the phase diagram of IVb is sur-

rounded by an unstable limit cycle. In the phase diagram of

Fig. 3 B, Va, a stable limit cycle surrounds an unstable steady

state. In Fig. 3 B, Vb, a stable limit cycle surrounds an unsta-

ble limit cycle, which further surrounds a stable steady state.

In summary, by manipulating the strength of the positive

and negative feedbacks, three classes of system dynamics

may be attained: a single stable steady state (Fig. 3 B, I–III),
bistable steady states (Fig. 3 B, IVa and IVb), and limit-cycle

oscillations (Fig. 3 B, Va and Vb). The relatively large regions

of bistability (Region IV) and oscillatory dynamics (Region

V) in Fig. 3 suggest that parameters with values in these

regions may have some physiological significance in regu-

lating CREB dynamics.

Bistability and oscillations in the minimal
model are robust to variations in parameters and
binding mechanisms

One way to investigate the robustness (or sensitivity) of

system dynamics is to vary system parameters and observe

changes in the size and location of the parameter regions

where particular dynamics exist. The small number of pa-

rameters in the minimal model allows a systematic analysis.

Fig. 4 displays the two-parameter bifurcation diagram in the

(Vx, Vy) plane after doubling the values of the six parameters

in Eqs. 1 and 2. Since homoclinic bifurcations (HC) and limit

points on periodic orbits (LP-PO) are very close to the

subcritical Hopf (sub-H) point in these parameter ranges,

only the Hopf points (sub-H and sup-H) and the limit points

(LP1 and LP2) are plotted.

Fig. 4, A and B, depicts the result of doubling the

dissociation constants of CREB1 and CREB2 from CREs

(Kx and Ky, respectively). Doubling Kx versus doubling Ky

gives opposite effects on the location of the loci of limit

points (LP1 and LP2) and Hopf bifurcation points (sub-H
and sup-H), with doubling of Kx moving LPs and Hopf

points to larger values of Vx and Vy. This shift is produced

because an increase in Kx increases the dissociation of

CREB1 from CREs, thereby decreasing the production of

CREB1 and CREB2, so that larger values of Vx and Vy are

needed to compensate. In contrast, an increase in Ky in-

creases dissociation of CREB2 from CREs, thereby increas-

ing the production of CREB1 and CREB2. Fig. 4, C and D,

illustrates the result of doubling the degradation rate con-

stants of CREB1 and CREB2 (kdx and kdy). Increases in these

parameters also have opposite effects on the location of LPs

and Hopf points. One significant effect of increasing kdy is an

elimination of oscillatory dynamics (Fig. 4 D) because at

large kdy, rapid degradation of CREB2 significantly weakens

the strength of the negative feedback loop that is required

for oscillations. Fig. 4, E and F, display the location of LPs

and Hopf points when doubling the basal synthesis rates of

CREB1 and CREB2 (rbas,x and rbax,y). Doubling rbas,x

FIGURE 3 (Vx, Vy) bifurcation diagram with corresponding distinct phase

diagrams of [CREB1] versus [CREB2]. (A) Bifurcation diagram with loci of

six codimension-1 singular points: LP, sub-H, sup-H, SNIC, HC, and LP-

PO. These loci delineate seven regions, denoted by I, II, III, IVa, IVb, Va, and

Vb. Two codimension-2 singular points exist: a cusp point and a Bogdanov-

Takens (BT) bifurcation point. Values of Vy denoted by A–D correspond to

the Vy values in Fig. 2, A–D, respectively. Basal parameter values are

otherwise used. (B) Phase diagrams corresponding to the labeled regions in

A. Stable (unstable) steady states are denoted by solid (open) circles, stable

(unstable) limit-cycle oscillations by solid (dashed) lines.
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significantly shrinks both regions of bistability and oscilla-

tion, whereas doubling rbas,y has little effect on these regions.

Taken together, the bistability and oscillatory dynamics are

robust to variations of system parameters.

We next examined whether bistability and oscillations are

robust to a change in the mechanism of CREBs binding to

CREs. The model of Eqs. 1 and 2 describes competitive

binding of CREB1 and CREB2. The model variant of Eqs. 3

and 4 describes noncompetitive binding. Fig. 5 compares the

regions of bistability and oscillation for the two binding

mechanisms. Changing the mechanism has negligible impact

on the limit points (LP1 and LP2), but significantly affects

the location of the Hopf bifurcations (sub-H and sup-H). For

noncompetitive binding, only sup-H bifurcations exist (thick
sup-H curve), in contrast with competitive binding (thin sup-H
and sub-H curves). Limit-cycle oscillations for noncompetitive

binding occur only in the region bounded by the thicker

sup-H curve and LP2, which is much smaller in size than the

corresponding region for competitive binding (bounded by

the thin curves sub-H, sup-H, and LP2). For noncompetitive

binding, the sup-H bifurcation points coalesce and disappear

at a degenerate Hopf point (DH) of codimension 2. Fig. 5

illustrates that for both binding mechanisms, the size of the

region corresponding to bistability and oscillations is fairly

large, indicating that the dynamics are relatively robust to a

change in binding mechanism.

The minimal model can qualitatively simulate
several experimental findings

Bistability of creb expression might help to explain several

experimental findings concerning the dynamics of CREB1

and CREB2 in protocols that can lead to LTM formation in

Aplysia. Empirically, five pulses of treatment with 5-HT

induce long-term strengthening or facilitation of synapses

between Aplysia sensory neurons and motor neurons, whereas

three pulses do not (40). This long-term synaptic facilitation

(LTF) correlates both with increased CREB expression (14)

FIGURE 4 Impact of doubling the values of

parameters on the two-parameter bifurcation

diagram in the (Vx, Vy) plane. Solid lines depict

loci of limit points (LP1, LP2), dashed lines

depict loci of Hopf bifurcation points (sup-H,

sub-H). Thin lines correspond to parameters

with basal values, thick lines correspond to

doubling a parameter value. (A) Kx is doubled.

(B) Ky is doubled. (C) kdx. (D) kdy. (E) rbas,x. (F)

rbas,y.
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and with long-term memory formation. Empirically, injec-

tion of CREB1 into sensory neurons lowers the threshold

for LTF induction from five 5-HT pulses to one pulse (15). In

contrast, injection of CREB2 prevents LTF from being elic-

ited by five pulses (16).

To phenomenologically simulate pulsed 5-HT application,

the synthesis rate constant of CREB1 (Vx) in Eqs. 1 and 2

was briefly increased. Vx was increased from its basal value

(0.4 min�1) to 3.7 min�1 to correspond to a [5-HT] elevation

from 0 to 10 mM. A bistable bifurcation diagram of [CREB1]

and [CREB2] versus Vx was constructed using Eqs. 1 and 2

(Fig. 6 A). This diagram exhibits two stable high and low

branches (solid lines) and an unstable middle branch (dashed
line). An elevation in Vx can cause [CREB1] to transit from

the LOW to the HIGH state. The HIGH state is stable when

[5-HT]¼ 0. After 5-HT is removed, [CREB1] will not return

to a basal level, but will remain in the HIGH state. Such a

bifurcation diagram is called an ‘‘irreversible switch’’. Two

thresholds exist in this bifurcation diagram. One threshold

concerns the bifurcation parameter (Vx)—the limit point at

Vx� 0.67 min�1. The second threshold concerns the variable

[CREB1]—the unstable middle steady state of [CREB1]

(;0.43) at [5-HT] ¼ 0.

If Vx is elevated above the first threshold for a sufficient

duration, [CREB1] will increase to the HIGH state and will

remain there when Vx returns to basal levels. Fig. 6 B
illustrates that five simulated pulses of 10 mM [5-HT] (Vx

increased to 3.7 min�1 for 5 min, interpulse interval ¼ 15

min) induce persistent [CREB1] elevation. However, three

pulses cannot, in qualitative agreement with experiment (40).

The physiological significance of the [CREB1] threshold

at [5-HT] ¼ 0 correlates with the CREB1 elevation required

to induce the persistent HIGH state of [CREB1]. The simulation

FIGURE 5 Bifurcation diagrams in the (Vx, Vy) plane. Thin curves

correspond to competitive binding (Eqs. 1 and 2), thick curves correspond to

noncompetitive binding (Eqs. 3 and 4). Solid curves depict loci of LP,

dashed lines depict loci of Hopf bifurcation points (sub-H, sup-H). Three

codimension-2 singular points are identified as cusp point, Bogdanov-

Takens (BT) bifurcation, and degenerate Hopf bifurcation (DH). The basal

set of parameter values was used.

FIGURE 6 Bifurcation diagram of [CREB1] and [CREB2] versus Vx and

time courses of [CREB1]. (A) Diagram depicting an irreversible switch of

[CREB1] (thick lines) and [CREB2] (thin lines) versus Vx. (B) Five pulses of

5-HT induce persistent [CREB1] elevation; whereas three pulses of 5-HT

only induce transient [CREB1] elevation. (C) An imposed elevation of

[CREB1] is simulated by choosing initial conditions [CREB1]t¼0 ¼ 0.3 and

[CREB2]t¼0 ¼ 0.2 (its basal steady state). [CREB1] elevation is paired with

a single pulse of 5-HT. Persistent [CREB1] elevation results (solid line).

Only a transient [CREB1] elevation results if five pulses of 5-HT are paired

with elevation of CREB2 to 2.0 ([CREB1]t¼0 is at basal steady state)

(dashed line). Parameters are at basal values except when [5-HT]¼10 mM,

Vx ¼ 3.7 min�1.
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displayed as the solid line in Fig. 6 C pairs a single pulse of

5-HT (5 min, [5-HT]¼ 10 mM) with an imposed elevation of

[CREB1] (to 0.3) such as might be produced by injecting

CREB1 into a neuron. This pairing induces long-lasting

CREB1 elevation. Because increased CREB1 expression

correlates with LTF, this simulation is consistent with the

observation that injection of CREB1 allows LTF following a

single 5-HT pulse (15). In the simulation, the imposed

elevation of [CREB1] is near but below the threshold of

CREB1 (middle, unstable steady state of [CREB1], Fig. 6 A).

Thus, a single pulse of 5-HT suffices to move [CREB1] up

past the threshold to elicit persistent CREB1 elevation.

In contrast, the simulation displayed as the dashed line in

Fig. 6 C pairs an imposed elevation of [CREB2] (to 2.0) with

five pulses of 5-HT. With [CREB2]¼ 2.0, only a lower stable

steady state of [CREB1] exists; therefore, only a transient

elevation of CREB1 results. This simulation is consistent

with the empirical observation that injection of CREB2

blocks 5-HT-induced LTF (16). In the model, the elevated

CREB2 inhibits CREB1 expression sufficiently to over-

whelm positive feedback, eliminating the stable HIGH state

of [CREB1].

Time delays in the expression of CREB1 or CREB2
can destabilize steady states and oscillations

Gene regulatory systems are characterized by time delays

between regulation of transcription and appearance of func-

tional gene product. Delays are created by processes such as

translocation of mRNA and transcription factors between the

cytoplasm and nucleus. Differential equations containing dis-

crete time delays have often been used to provide approx-

imate, qualitative models of biological systems with delay

(29–32), and we adopt this technique here. The addition of

discrete delays to ordinary differential equations such as Eqs.

1 and 2 allows for qualitative predictions of how delays af-

fect dynamics without greatly altering the form or complex-

ity of the model. However, we note that biological delays are

not actually discrete. To model more precisely the processes

underlying delays, such as macromolecular diffusion or ac-

tive transport, partial differential equations would be required.

To qualitatively explore the effects of time delays on the

model of Eqs. 1 and 2, discrete delays for the synthesis of

CREB1, tCREB1, and of CREB2, tCREB2, were incorporated

into the terms that describe the production processes of

CREBs in Eqs. 1 and 2. The resulting DDEs are given as

Eqs. 5 and 6. With low levels of negative feedback (Vy ¼
0.01 min�1, other parameters as in Fig. 2 A), neither tCREB1

or tCREB2 can induce a limit-cycle oscillation. For small Vy,

the stability of the steady states in Fig. 2 A (lower and upper

stable, middle unstable) is not affected by introducing

tCREB1 or tCREB2. Negative feedback is required to sustain

oscillations irrespective of time delays. With more negative

feedback (Vy $ 0.4 min�1, Fig. 2, B–D) either tCREB1 or

tCREB2 can destabilize a steady state and generate a limit-

cycle oscillation. Fig. 7 illustrates how introducing tCREB1

and tCREB2 impacts the stability of the steady-state and

oscillatory solutions in Fig. 2 D1. As shown in Fig. 7 A1,

starting from the stable limit cycle of Fig. 2 D1 (Vy ¼ 2

min�1, Vx ¼ 1 min�1), the amplitude of oscillations is

rapidly reduced by increasing tCREB1. The stable oscillation

disappears at a Hopf bifurcation, tCREB1 ¼ 9 min, and is

replaced by a stable steady state for 9 min # tCREB1 # 100

min. This state is destabilized by another Hopf bifurcation at

tCREB1 ¼ 100 min. The amplitude of the resulting stable

oscillations varies in a complicated way for tCREB1 . 100

min, as does the period (Fig. 7 A1, inset). Fig. 7 A2 illustrates

the impact of tCREB2 on the limit cycle of Fig. 2 D1. For 0 #

tCREB2 , 100 min, tCREB2 rapidly increases the amplitude of

oscillations; however, when tCREB2 . 100 min, the ampli-

tude reaches a plateau. The inset illustrates that the period

varies linearly with tCREB2.

For a low stable steady state of [CREB1] in Fig. 2 D1 (Vy¼
2 min�1, Vx ¼ 0.6 min�1) neither tCREB1 nor tCREB2

separately can destabilize this state. However, a proper com-

bination of tCREB1 and tCREB2 can destabilize it (Fig. 7 B). At

tCREB2 ¼ 60 min, increasing tCREB1 to 180 min destabilizes

the lower steady state. The amplitude of oscillations signif-

icantly increases with increasing tCREB1 and reaches a plateau

for tCREB1 . 600 min. The period varies linearly with tCREB1

(Fig. 7 B, inset).
Finally, starting from the stable steady state with high

[CREB1] in Fig. 2 D1 (Vy ¼ 2 min�1, Vx ¼ 2.8 min�1),

introduction of either tCREB1 or tCREB2 can destabilize the

state. As illustrated in Fig. 7 C1 with tCREB2¼ 0, an increase

in tCREB1 to 180 min induces an oscillation via Hopf bifur-

cation from the steady state. A further increase in tCREB1

to ;850 min or above generates a time course of [CREB1]

that, although oscillatory, exhibits substantial random var-

iation in oscillation amplitudes (broad dark area in Fig. 7

C1). Such a time course suggests chaotic dynamics. For

tCREB1 ¼ 0 and tCREB2 increasing, when tCREB2 reaches ;3

min (Fig. 7 C2, inset), an oscillatory solution bifurcates from

the steady state. Increasing tCREB2 increases the period

linearly (not shown).

Further simulations illustrated qualitatively similar effects

of these time delays on the stability of the HIGH and LOW

steady states in the bistable regions of Fig. 2 B, and of

oscillatory solutions in Fig. 2 C 1. In summary, both tCREB1

and tCREB2 can destabilize either stable steady states or

stable limit-cycle oscillations. Increasing tCREB1 may gen-

erate chaotic dynamics (Fig. 7 C1). In contrast, increasing

tCREB2 appears only to generate regular oscillations.

For plausible average molecule numbers,
bistability is preserved when stochastic
fluctuations are considered

Stochastic molecular noise may have a significant impact on

nonlinear system dynamics (41–43). To what extent can
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deterministic bifurcation diagrams predict the behavior when

stochastic noise due to fluctuating copy numbers of molec-

ular species is present? In this section, the relationship

between deterministic bifurcation analysis and the dynamics

with noise is examined. The Gillespie algorithm is used to

simulate the dynamics with molecular noise. The propensity

associated with each reaction step in Table 1 is a stochastic

version of each kinetic term in Eqs. 1 and 2. At each time

step, the algorithm randomly chooses which possible reac-

tion event occurs, updates the system state accordingly, and

also determines the time step to the next reaction event. In

Table 1, the parameter V transforms the concentration units

into molecule numbers, and the kinetic rate constants are

expressed in terms of molecule numbers. V represents the

system volume.

As illustrated in Fig. 8, deterministic bifurcation diagrams

are able to predict the outcomes of stochastic simulations of

the model in the bistability region. Fig. 8 A repeats the

bifurcation diagram of Fig. 2 A with Vy ¼ 0.01 min�1 (low

negative feedback), in which there is a large bistable region.

From this diagram, specific values of Vx were chosen for

stochastic simulations. These were 1), Vx ¼ 0.1 min�1, with

a single low steady state of [CREB1] (Fig. 8 A, dash-dotted
line B); 2), Vx ¼ 0.18 min�1; 3), Vx ¼ 0.2 min�1; 4), Vx ¼
0.22 min�1; 5), Vx ¼ 0.24 min�1; and 6), Vx ¼ 0.7 min�1.

Values 2–5 all lie within the bistable region of Fig. 8 A (Fig.

8 A, inset, lines C–F); and value 6 corresponds to a single

high steady state. For these values of Vx, the outcomes of

stochastic simulations are illustrated in Fig. 8, B–G, respectively.

At Vx ¼ 0.1, the stochastic time course in Fig. 8 B1
exhibits a fluctuation between 0 and 10 in the number of

CREB1 molecules. Fig. 8 B2 illustrates the corresponding

steady-state probability distribution of the number of CREB1

molecules. For this case, corresponding to a single deter-

ministic steady state of low [CREB1], the probability dis-

tribution has a unimodal shape. At Vx ¼ 0.18 min�1, two

stable steady states and one unstable steady state exist in Fig.

8 A. In the presence of molecular noise, CREB1 molecule

FIGURE 7 Bifurcation diagrams il-

lustrating effects of time delays. Dia-

grams were each constructed by a large

number of individual simulations. Each

point corresponds to a single simulation

that was run sufficiently long to deter-

mine the attractor dynamics, whether a

steady state or a limit cycle. For limit

cycles, maxima and minima are plotted.

Parameter values are as in Fig. 2 D1

(Vy ¼ 2 min�1). (A) At Vx ¼ 1 min�1,

oscillations exist with no time delays.

(A1) Bifurcation parameter tCREB1 (at

tCREB2 ¼ 0); destabilization of oscilla-

tion or stable steady state is through

Hopf bifurcations. (Inset) Dependence

of period on tCREB1. (A2) Bifurcation

parameter tCREB2 (at tCREB1 ¼ 0).

(Inset) Dependence of period on tCREB2.

(B) Vx ¼ 0.5 min�1, a steady state of

low [CREB1] exists with tCREB1 ¼ 0

and tCREB2 ¼ 60 min. Increasing

tCREB1 destabilizes the steady state

through a Hopf bifurcation. (Inset)

Dependence of period on tCREB1. (C)

Vx ¼ 2.8 min�1, a steady state of high

[CREB1] exists with tCREB1¼ tCREB2¼
0. (C1) Bifurcation parameter tCREB1 (at

tCREB2¼ 0). (C2) Bifurcation parameter

tCREB2 (at tCREB1 ¼ 0). (Inset) Expan-

sion of the tCREB2 axis.
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numbers flip between the neighborhoods of the two stable

steady states, as illustrated by the stochastic time series in

Fig. 8 C1. Most commonly, CREB molecule numbers reside

around the LOW state, and only occasionally near the HIGH

state. Consequently, the steady-state probability distribution

of the number of CREB1 molecules (Fig. 8 C2) exhibits a

bimodal distribution (44,45) with a higher hump at a small

number of CREB1 (;1–2) and a lower hump at CREB1 ;15.

FIGURE 8 Relation between the deterministic bifurcation diagram and stochastic simulations in or near the region of bistability. (A) Bifurcation diagram of

[CREB1] versus Vx at Vy ¼ 0.01 min�1. When 0.177 min�1 # Vx # 0.68 min�1, there exist two stable steady states (solid line) and an unstable steady state

(dashed line). (Inset) Expansion of Vx axis. (B–G) Stochastic simulation at six values of Vx corresponding to lines marked B–G in A. (B1–G1) Time courses of

the number of CREB1 molecules. (B2–G2) Steady-state probability distributions. (B) Vx¼ 0.1 min�1. (C) Vx¼ 0.18 min�1. (D) Vx¼ 0.2 min�1. (E) Vx¼ 0.22

min�1. (F) Vx ¼ 0.24 min�1. (G) Vx ¼ 0.7 min�1. The volume factor V ¼ 10.
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When Vx is successively increased to 0.2 min�1, 0.22

min�1, and 0.24 min�1, the corresponding CREB1 time se-

ries (Fig. 8, D1–F1) illustrate that CREB1 molecule numbers

reside progressively more commonly near the HIGH state.

The steady-state bimodal probability distributions (Fig. 8,

D2–F2) shows a progressive shift toward the HIGH state.

Upon further increasing Vx to 0.7 min�1, which corresponds

deterministically to a single steady state with high [CREB1],

CREB1 molecule numbers are found to reside near the HIGH

state (Fig. 8 G1), with a unimodal probability distribution

(Fig. 8 G2).

Why do CREB1 molecule numbers sometimes preferen-

tially reside around the LOW state (e.g., Fig. 8 C), and other

times around the HIGH state (e.g., Fig. 8 F)? One important

factor determining these preferences can be found by in-

specting the bistability region of the deterministic bifurcation

diagram. Inspection of the dash-dotted line C (Fig. 8 A, inset)
illustrates that the middle unstable steady state is vertically

closer to the upper steady state than to the lower steady state,

whereas on line F (Fig. 8 A, inset), the middle unstable steady

state is vertically closer to the lower steady state. The un-

stable steady state plays the role of threshold for the noise-

induced transitions between the two stable steady states (i.e.,

the difference in the CREB1 molecule numbers between

either stable steady state and the middle state is a barrier that

has to be overcome for the occurrence of state transitions).

The larger the barrier, the more robust the steady state is to

molecular noise. On line F (Fig. 8 A, inset) one can predict

that the LOW state is less robust to noise. This is the outcome

of the stochastic simulation, with CREB1 molecule numbers

usually residing near the HIGH state (Fig. 8 F2). From lines

C–F (Fig. 8 A, inset), the distance from the HIGH state to the

middle unstable state becomes larger, predicting that the resi-

dence time near the HIGH state should become larger. Stochas-

tic simulations illustrate this, with the probability distribution

peak shifting to the HIGH state (Fig. 8, C–F). The deter-

ministic bifurcation diagram helps one to predict the rough

shape of the probability distribution and the relative resi-

dence time of CREB molecule numbers near stable states.

Next, the first transition time (FTT) (46,47) was employed

to examine how the robustness of bistable steady states

changes with the numbers of molecules of each species,

which scale with the volumetric parameter V. FTT is defined

as the time interval required for the system to transit between

steady states (e.g., FTT (HIGH to LOW) represents the time

interval at which a system initially at the HIGH state flips for

the first time to the LOW state). A simulated FTT depends on

the seed of the random number generator. Therefore, an av-

erage FTT over a number of stochastic simulation runs must

be used to characterize the average lifetime of a stable steady

state. Fig. 9 illustrates FTTs for HIGH to LOW and vice

versa. In Fig. 9 A, for discrete values of V, FTTs (LOW to

HIGH) are plotted as solid circles and FTTs (HIGH to LOW)

as open circles. Each vertical set of small circles consists of

100 individual FTTs for each V, and within each vertical

set, the large circle corresponds to the average FTT for that

set. Fig. 9, A and B, differ in that Vx ¼ 0.18 min�1 for Fig. 9

A (Fig. 8 A, line C) and Vx ¼ 0.24 min�1 for Fig. 9 B (Fig. 8

A, line F). Fig. 9, A and B, illustrates that the average FTTs

(HIGH to LOW) and (LOW to HIGH) both always increase

with increasing V. Increasing V corresponds to increasing

average molecule numbers, thereby approaching a deter-

ministic system. Thus, random transitions between the HIGH

and LOW states become rare. For each of the four sets of

FTTs, the average FTTs (larger circles) are fit reasonably

well by straight lines, as illustrated. These linear fits of the

logarithmic plots indicate that the average FTTs are all ex-

ponentially dependent upon V, in agreement with Bialek (48).

The average FTTs (LOW to HIGH) are much longer than

the average FTTs (HIGH to LOW) for the case represented

in Fig. 9 A, in which the deterministic HIGH state is closer to

the unstable middle state than is the deterministic LOW state

FIGURE 9 First transition time and the average of 100 simulations of the

bistable steady states (HIGH and LOW) versus V. (A) FTT and the mean of

the HIGH and LOW states versus V at Vx ¼ 0.18 min�1, Vy ¼ 0.01 min�1.

Small solid circles denote individual FTTs (LOW to HIGH), and large solid

circles are the averages of 100 vertically adjacent FTTs. Small open circles

denote individual FTTs (HIGH to LOW), and large open circles are average

FTTs. Solid line denotes the exponential fit of the average FTT (LOW to

HIGH) versus V, and dashed line denotes the exponential fit of the average

FTT (HIGH to LOW) versus V. (B) Similar to A, but at Vx ¼ 0.24 min�1,

Vy ¼ 0.01 min�1. Other parameters are as in Fig. 8.
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(Fig. 8 A, inset, line C). At V ¼ 10, the average number of

CREB1 molecules is ;20, and the average FTT (LOW to

HIGH) (or the average lifetime of the LOW state) is ;850 h,

whereas the average FTT (HIGH to LOW) is only ;1.5 h.

Even at V ¼ 50 (;100 CREB1 molecules on average), the

average lifetime of HIGH is only ;4 h. However, with in-

creased strength of positive feedback (Vx ¼ 0.24 min�1)

(Fig. 8 A, line F), there is a dramatic shift in the FTTs. The

average FTT (HIGH to LOW) now becomes much larger

than the average FTT (LOW to HIGH), as illustrated in Fig.

9 B. At V ¼ 8, the average number of CREB1 molecules is

only ;15, but nevertheless the average FTT (HIGH to

LOW) is ;450 h. This means that ;15 CREB1 molecules

can sustain a HIGH state with an average lifetime of tens of

days in this case. Thus, at a higher strength of positive feed-

back, small average molecule numbers suffice to maintain a

persistent state of elevated CREB1 expression. As discussed

previously, such a state might correlate physiologically with

prolonged gene induction by CREB1 and consequent estab-

lishment of long-term memory.

We further examined how negative feedback impacts the

robustness of the bistable steady states. By increasing the

strength of negative feedback (e.g., varying Vy from 0.01

min�1 to 0.06 min�1), the distance of the HIGH state from the

threshold becomes smaller for a fixed Vx ¼ 0.22 min�1 (data

not shown). Correspondingly, the average FTT (HIGH to

LOW), decreases from ;60 h to ;5 h. For a fixed but strong

negative feedback (Vy¼ 0.07 min�1), increasing Vx increases

the distance of HIGH from the threshold and increases the

average FTT (HIGH to LOW), as in Fig. 9. Thus the

robustness of the ‘‘memory’’ (HIGH) state against noise can

be increased substantially by decreasing negative feedback

strength as well as by increasing positive feedback strength.

Molecular noise degrades deterministic
oscillations, but can also induce oscillations
via stochastic resonance

What molecule numbers are required for oscillations pre-

dicted by deterministic ODEs to persist in the presence of

molecular noise? To examine this issue, we used the

Gillespie method to simulate the effect of noise on the limit

cycle of Fig. 2 C1 (Vx¼ 0.9 min�1, Vy¼ 0.8 min�1). When a

small number of CREB molecules (V ¼ 10) are present in

the system, the stochastic time course (Fig. 10 A, left) of the

number of CREB1 molecules fluctuates between 1 and 140.

The corresponding phase diagram of CREB1 versus CREB2

(Fig. 10 A, middle) exhibits an attractor very smeared out by

noise, and the PSD versus frequency (Fig. 10 A, right) is

rather broad. Therefore, at these low average molecule

numbers, reproducible oscillations have been eliminated by

noise. When V is increased to 50 (Fig. 10 B), the number of

CREB1 molecules and the corresponding phase diagram

exhibit less noisy oscillatory dynamics. The PSD exhibits a

FIGURE 10 Characterization of stochas-

tic oscillatory dynamics at four values of V.

(Left column) Time series of the number of

CREB1 molecules. (Middle column) Mol-

ecule-number trajectories of CREB1 versus

CREB2. (Right column) Power spectrum

densities (arbitrary unit) versus frequency

(h�1) of the time courses. (A) V ¼ 10. (B)

V ¼ 50. (C) V ¼ 200. (D) V ¼ 500.

Parameter values correspond to determin-

istic oscillations: Vx ¼ 0.9 min�1, Vy ¼ 0.8

min�1 (Fig. 2 C1), other parameters at basal

values.
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much narrower frequency distribution with a peak near 0.1

h�1. Thus, with average molecule numbers in the low hun-

dreds, regular oscillations are preserved despite noise. This

range of molecule numbers was found to be sufficient to

preserve oscillations in previous reduced models of gene

regulation (29,30). When V increases to 200 (Fig. 10 C),

fluctuations are still significant. However, the regularity of

periodicity is prominent, as illustrated by the sharp PSD peak

at ;0.1 h�1 (Fig. 10 C, right). With V ¼ 500, the oscillation

is very close to the deterministic limit cycle (Fig. 10 D).

The above simulations illustrate degradation of oscilla-

tions by noise. However, in a phenomenon termed stochastic

resonance, molecular noise has also been shown, in a variety

of systems, to induce oscillations when the system is at a

deterministic steady state but close to a Hopf bifurcation

point (49,50). We examined whether the minimal model

exhibits this phenomenon. Fig. 11 A illustrates the time

courses of stochastic oscillations in the number of CREB1

molecules for V ¼ 50, 100, and 1000, with model param-

eters corresponding to a deterministic steady state (Vx¼ 0.75

min�1) (Fig. 2 D1) close to a supercritical Hopf bifurcation

point (Vx ¼ 0.78 min�1) (Fig. 2 D1). Large fluctuations in

CREB1 molecule numbers occur for these values of V.

Inspection of these time courses does not suffice to determine

whether an oscillatory component is significant. It is neces-

sary to construct PSD distributions.

Here, the three PSDs were first computed as in Fig. 10.

However, it is not possible to use these noisy PSDs to

quantitatively characterize the periodicity of the stochastic

oscillations. Therefore, the procedure proposed by Hou and

Xin (50) was used to characterize the periodicity of the sto-

chastic time courses in Fig. 11 A. The PSDs were smoothed

by replacing each original point with the value obtained by

averaging over that point and the 50 closest original points.

These smoothed PSDs are illustrated in Fig. 11 B. The PSD

for V ¼ 50 shows a weak but significant peak at a frequency

of ;0.06 h�1. The PSD for V ¼ 100 shows a much sharper

peak at about the same frequency. This peak illustrates that a

significant oscillatory component is present in the V ¼ 100

time course. In contrast, for very large V (1000), the PSD

fails to show a peak, signifying that as deterministic dynam-

ics are approached, the periodic oscillation component dis-

appears, and only random fluctuations about the stable steady

state persist. These PSDs illustrate stochastic resonance, with

FIGURE 11 Molecular noise can yield stochastic reso-

nance when a steady state (Vx ¼ 0.75 min�1, Vy ¼ 2

min�1) is close to a supercritical Hopf bifurcation (Vx ¼
0.78 min�1, Vy ¼2 min�1, Fig. 2 D1). (A) Time courses of

CREB1 at V ¼ 50, 100, and 1000. (B) Smoothed power

spectrum density (PSD) versus frequency of stochastic

oscillations at the values of V in A. The points A–C, with

V¼ 100, illustrated in B, are used to compute the effective

SNR (Eq. 13). (C) Effective SNR versus V. The existence

of a peak at V ¼ 100 demonstrates stochastic resonance.
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a strong oscillatory component for the dynamics of V ¼ 100

in particular. An effective signal/noise ratio (SNR) can be

defined by the following equation (50):

effective SNR ¼ PSDðBÞ
PSDðAÞ

� �
f ðBÞ

f ðCÞ � f ðBÞ

� �
: (13)

In Eq. 13, PSD(�) denotes the PSD level at a given point,

and f(�) denotes the frequency at a given point. Point B

corresponds to the maximum PSD, point A corresponds to

the minimum PSD at the low-frequency side of point B, and

point C is on the high-frequency side of point B and is

determined by the condition PSD(C) ¼ PSD(B)/e. This

effective SNR characterizes the height of the peak in the PSD

normalized by its relative width. As demonstrated in Fig. 11

C, there is a maximum in the SNR versus V curve in the

vicinity of V¼ 100, which corresponds to an optimal system

size for inducing internal stochastic resonance.

DISCUSSION

The minimal model is useful to delineate
the dynamics of a putative gene regulatory
motif involving interlocked positive and
negative feedbacks

Different types of biochemical regulatory motifs (or minimal

building blocks of biochemical circuitry), such as feedback

and feedforward loops, have been suggested (51,52). The

interlocked feedback loops of Fig. 1 represent a combination

of minimal motifs, which can exhibit more complex be-

haviors than the individual components. For example, upon

modulation of the relative strengths of positive and negative

feedback (e.g., by manipulating the production rate of

CREB1 activator or CREB2 repressor), the minimal model

can exhibit complex behaviors, such as a bistable genetic

toggle switch and oscillations of gene expression (Fig. 3).

The dynamic complexity arises from the nonlinear inter-

play of the different strengths of positive and negative feed-

back loops. Although one can construct a switch with just a

single-gene positive feedback or double-negative feedbacks

(52,53), and an oscillator with a single-gene negative feed-

back (54), it may be possible to use the CRE enhancer se-

quences and creb genes to construct a genetic circuit element

that can transduce stimuli into multiple types of responses,

manifesting both switch and oscillatory behaviors by modu-

lating the relative strengths of the interlocked positive and

negative feedbacks. Therefore, this interlocked positive and

negative feedback circuit could act as a ‘‘multifunctional con-

verter’’ in gene circuit design.

Interlocked positive and negative feedback loops play

essential roles in determining system dynamics in various

biological contexts. For example, positive and negative

feedbacks of Cdc2-cyclin B and APC support oscillations in

the cell cycle regulatory circuit (55); and positive and

negative feedback associated with tumor suppressor protein

p53 and Mdm2 may demonstrate bistability or oscillatory

dynamics (56). Minimal models similar to that presented

here, representing basic regulatory network structures, will

be useful to systematically delineate complex behaviors of

such biochemical architectures.

Deterministic bifurcation analysis and
stochastic modeling provide complementary
dynamic information

Simulations illustrated that a critical number of molecules is

required to maintain a reproducible oscillation in the pres-

ence of molecular noise (e.g., V ¼ 200, Fig. 10 C, average

number of CREB1 ;600). The model also exhibits sto-

chastic resonance. Molecular noise can move a system from

a stable steady state into an oscillatory regime, if the steady

state is near a deterministic Hopf bifurcation point (Fig. 11).

An optimal noise level was found to yield stochastic re-

sonance with a sharply peaked power spectrum (V ¼ 100)

(Fig. 11 C).

In bistable regions of bifurcation diagrams (Figs. 2 A and 8

A), the system relaxes to either the HIGH or LOW state, and

cannot transit between states unless forced by a large external

perturbation. However, with molecular noise, molecules can

flip between states, which leads to a bimodal probability

density distribution of molecule numbers. Bimodal distribu-

tions have been experimentally validated in several biological

systems (57–59).

Our investigation of the effect of stochastic noise on

bistability illustrates how the deterministic bifurcation dia-

grams may be used to qualitatively determine the shape of

bimodal distributions and the relative robustness of the stable

states against molecular noise. By inspection of the bistable

bifurcation diagram (e.g., Fig. 8 A), the relative distances

from the threshold (middle unstable steady state) to the

HIGH steady state versus the LOW steady state determine

the shape of the bimodal probability density distribution.

For example, if j½CREB1�HIGH � ½CREB1�thresholdj ,

j½CREB1�LOW � ½CREB1�thresholdj (e.g., Fig. 8 A, inset, line
C), the threshold is relatively lower for the CREB1 molecule

numbers to fluctuate down from the HIGH state to the LOW

state, as compared with fluctuating up from the LOW state to

the HIGH state. Therefore, the CREB1 molecule number

more commonly resides near the LOW state, which has the

larger peak in the probability distribution (Fig. 8 C2) and

the average FTT (LOW to HIGH) is larger than the av-

erage FTT (HIGH to LOW) (Fig. 9 A). On the contrary,

if j½CREB1�HIGH � ½CREB1�thresholdj . j½CREB1�LOW�
½CREB1�thresholdj, the HIGH state is more robust and has a

larger peak in the probability distribution (Fig. 8 F2).

This simple criterion, used alone, is only reliable if the

distances of the two stable states from the unstable middle

state are substantially different. For line D in Fig. 8 A, the

HIGH state is only slightly, not substantially, farther from the

threshold. Although for the probability distribution (Fig. 8 D),
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the peak for the HIGH state is lower, the area under the

HIGH peak appears somewhat greater. In such a case, the

average FTT (HIGH to LOW) and FTT (LOW to HIGH) at

some V is further required to predict the shape of bimodal

probability distribution, and to characterize the robustness of

the HIGH and LOW states against molecular noise. For

example, an approximately equal average FTT (HIGH to

LOW) and FTT (LOW to HIGH) indicates an approximately

identical area under the HIGH and LOW humps in the prob-

ability distribution.

Kummar et al. (60) recently proposed a measure to char-

acterize the difference between deterministic and stochastic

simulated behaviors. The divergence property (quantified by

the sum of Liapunov exponents) of a stable or oscillating

solution provides a measure of the robustness of the solution

to molecular noise, with a more negative divergence corre-

sponding to greater robustness. Applied to bistability, an

equal divergence value of the HIGH and LOW states would

indicate that the HIGH and LOW states have similar attractor

properties, corresponding to similar areas below these peaks

in the probability distribution. Therefore, this approach can

provide a complementary method to predict the shape of a

bimodal probability distribution in a region of bistability.

Further stochastic simulations illustrated that either

increasing the strength of positive feedback (increasing Vx)

or decreasing the strength of negative feedback (decreasing

Vy) tends to increase the robustness and average lifetime of

the HIGH state to molecular fluctuation. As discussed

previously, such a state might correlate physiologically with

prolonged gene induction by CREB1 and consequent estab-

lishment of long-term memory. For example, an average ;1-h

lifetime of the ‘‘memory’’ state with weak positive feedback

(Vx ¼ 0.18 min�1, V ¼ 8) (Fig. 9 A) increases to ;450 h

given only a modest increase in positive feedback (Vx¼ 0.24

min�1, V ¼ 8) (Fig. 9 B). Similarly, decreasing negative

feedback by decreasing Vy from 0.06 min�1 to 0.01 min�1

increases the average lifetime of the memory state from ;5 h

to ;40 h (Vx ¼ 0.22 min�1, V ¼ 10, data not shown). These

results suggest that pharmacological interventions that vary

the strength of positive and negative feedback may improve

the formation of LTM, if long-lasting [CREB] elevation

contributes to LTM. For example, negative feedback may be

decreased by phosphorylation of CREB2 by MAPK (16). In

addition, the putative positive feedback in which CREB1

activates its own gene requires phosphorylation of CREB1

(14), and MAPK activation following 5-HT exposure cor-

relates with phosphorylation of CREB1 (61). These consid-

erations suggest that pharmacological intervention enhancing

and prolonging MAPK activation is likely to enhance CREB1

activation and the formation of LTM. A more detailed model

of the dynamics of MAPK and CREB1 in Aplysia following

5-HT application has similarly predicted that prolongation of

MAPK activation would enhance LTM (62).

In previous studies (62,63), we suggested an alternative

positive feedback loop that might exhibit a bistable switch

behavior contributing to the persistence of LTM. In this loop,

PKA phosphorylates a transcription factor, thereby increas-

ing the expression of an ubiquitin hydrolase (Ap-Uch). Ap-

Uch then acts to increase PKA activity, closing the loop.

Active PKA also phosphorylates CREB1. This phosphory-

lation is necessary for CREB1 to induce creb1 expression,

thus sustaining the CREB1 positive feedback loop. Phos-

phorylated CREB1 may also induce creb2, thus sustaining

the CREB2 negative feedback loop. Therefore, the feedback

loops of CREBs examined in this study would be down-

stream effectors of the PKA/Ap-Uch feedback loop. In this

way, all three feedback loops may contribute to the induction

and persistence of CREB expression and LTM. Additional

feedback loops may play a role in regulating CREB expres-

sion. Inducible cAMP early repressor (ICER) can bind to

CREs and thereby repress the activity of its own expression,

forming a negative feedback loop (18,64). In Aplysia,

CREB1a (an isoform of CREB1) is the activator, whereas

CREB1b (an alternatively spliced isoform of CREB1) is a

repressor (15). CREB1b might form another negative feed-

back loop that interferes with the expression of CREBs. It

would be of interest to incorporate these additional feedback

loops into the minimal model, and investigate their interplay

and the potential nonlinear dynamics. Given that increased

CREB1 expression correlates with long-term synaptic facil-

itation (LTF), qualitative simulations of CREB1 dynamics

with the minimal model are consistent with experiments that

induce LTF with pulsed 5-HT applications (Fig. 6).

Although the minimal model has advantages in system-

atically investigating the potential nonlinear dynamics of

feedback loops involving CREB proteins, a more detailed

model of regulation by CREB proteins that integrates data

concerning CREB activation by signaling pathways is needed.

With the accumulation of experimental data on the dynamics

of kinases and genes that regulate CREB activation and

expression, it is feasible to add these details to the minimal

model. A detailed model will help establish a more quan-

titative understanding of the mechanisms that underlie the

induction and persistence of LTM. Design of experimental

protocols to enhance LTM, and development of more ef-

fective treatments for memory disorders (5), could benefit

as a result.

SUPPLEMENTARY MATERIAL

An online supplement to this article can be found by visiting

BJ Online at http://www.biophysj.org.
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